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Abstract 

Solutions to Maxwell 's equat ions at a semi4nfini te  plane and a double slit are used to 
construct  lines of  cons tant  ampli tude,  constant  phase and energy flow. The  lines of  
energy flow show how the electromagnetic bounda ry  condi t ions  necessi tate a particular 
undula t ion  in the  pa th  of  the  light energy and that  the  consequent  redis t r ibut ion of  
energy corresponds with a diffraction or interference pattern.  This in terpre ta t ion 
complemen t s  ~lie interpretat ion in te rms  of  the  interaction o f  secondary wavelets due 
to Huygens.  

1. Introduction 

The classical theory of diffraction and interference has its roots in the 
principle proposed nearly three hundred years ago by Christian Huygens. 
According to this principle every point on a wave front (i.e. a surface of 
constant phase) is regarded as a source of secondary spherical wavelets and 
the subsequent development of the wave front can be derived from the super- 
position of these wavelets. Fresnel assumed that the amplitude of the 
secondary wavelets varied as cos 0, where 0 is the angle between the direction 
of the incident light and the direction of propagation of the wavelets. He 
was thus able to account for the intensity distribution of diffraction patterns, 
although the corresponding phase distribution was not correct. A more refined 
expression of Huygens' principle followed from the work of Kirchhoff who 
showed that it was necessary to assume that the amplitude of the wavelets 
varied as 1 + cos 0. This modification gives results which are in good agree- 
ment with experiment at distances greater than several wavelengths from the 
diffraction edge. 

Kirchhoff showed that the light wave at any point in space can be expressed 
as an integral over a closed surface surrounding that point. By allowing the 
surface to coincide with the diffraction screen and evaluating the integral 
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with suitable boundary conditions the solution to any scalar diffraction 
problem can in principle be obtained. However this requires a knowledge of 
the amplitude and phase together with their derivatives with respect to the 
normal over the whole surface. In practice these are never known exactly so 
that only approximate solutions can be obtained with the help of simplifying 
assumptions. In Kirchhoff's theory, Huygens' wavelets appear as contributions 
to the integral, but their amplitude is dependent upon the boundary con- 
ditions and cannot be precisely specified so that the wavelet concept begins 
to lose its simple physical significance. 

The complete solution to diffraction problems can be obtained from 
Maxwell's equations. This approach allows the polarization of  the light as well 
as the electrical properties of the diffraction screen to be taken into account, 
although exact solutions have been obtained in only few cases of physical 
interest because of the mathematical difficulties involved. Maxwell's equations 
also suggest an alternative interpretation of diffraction and interference 
phenomena, in terms of an undulation of the light path defined by the 
Poynting vector, which is complementary to the wavelet concept of  Huygens. 
In this paper we examine the solution to Maxwell's equations at a semi- 
infinite plane and at a double slit and show how the resulting diffraction and 
interference patterns arise from the nonlinear trajectory of the energy flow. 

2. The Exact  Solution to MaxweU's Equations at a SemMnf in i te  Plane 

The exact solution to Maxwell's equations for a uniform plane wave 
incident upon an infinitesimally thin, perfectly conducting sheet of  semi- 
infinite extent and bounded by a straight edge was originally obtained by 
Sommerfeld (1954). A further step was taken by Braunbek and Laukien 
(1952) who showed that Sommerfeld's solution can be expressed in the form 
of intensity and phase distributions, and they plotted this solution, together 
with lines of energy flow, over a region extending to one wavelength from 
the diffraction edge. In Figure 1 similar plot has been extended to several 
wavelengths from the edge so that certain features of the solution can be 
more clearly seen. 

Following Braunbek and Laukien, we consider a situation in which the 
incident wave travels in the positive y direction, and the semi-infinite plane 
lies in the x z  plane with its edge along the z axis. We deal only with the case 
in which the magnetic vector lies in the z direction (parallel to the diffraction 
edge). The electric vector then lies always in the x y  plane. 

It follows from Sommerfeld's solution, for the particular case of normal 
incidence that 

Hz = A [F(o) exp(-iT) + F(o')  exp(iT)] (2.1) 



INTERPRETATION OF DIFFRACTION AND INTERFERENCE 

27"rr 
r =--/-sin 4 

4 

4 +  a' = - 2  (X)~ (sin ~ - cos~) 
F(o) = f exp(-iTrr2/2) dr 

_ o o  

171 

(2.2) 

= - x  [.oi+ 
Ey 27ri\eo] 3x 

(2.3) 

where X is the wavelength, and r and 4 are polar coordinates in the xy plane. 
The time factor, exp icot, has been omitted. 

Equation (2.1) can be written in the form 

Hz = H(r, 4) exp [i~(r, 4)] (2.4) 

which enables one to preserve the amplitude H and phase qJ of the magnetic 
field. The reduction is somewhat cumbersome and is not reproduced here, 
but it follows directly from the preceding equations. 

The components of the Poynting energy flow vector which represents the 
energy flow averaged over one cycle are 

Sx = ½ Re (Hz " Ey*) (2.5) 

sr : -½ Re (Itz . E*) 

where Re refers to the real component and the * superscript indicates the 
complex conjugate. 

The differential equation for the energy flow lines which indicate the 
direction of the energy flow is 

dr _ r(Sx cos 4 + Sy sin 4) 
(2.6) 

d¢ (Sy cos 4 - Sx sin ~b) 

which can be integrated after inserting functions from equations (2.1) (2.3) 
and (2.5). 
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Figure 1-Solution for the semi-infinite plane: (a, above) lines of constant amplitude; 
(b, facing page) lines of constant phase ( ) and lines of energy flow ( ). 

The lines of constant amplitude are shown in Figure la. The lines of  con- 
stant phase are drawn as thin lines in Figure lb. The interval between neigh- 
bouring lines is zr/2 radians. At the points of intersection on the bright side 
of the screen the phase contours undergo a discontinuous change of rr radians. 
These points correspond with the points of zero amplitude in Figure 1 a. For 
full details of the absolute magnitude of the phase the large scale plots of 
Braunbek and Laukien (1952) should be consulted. The lines showing the 
direction of energy flow are drawn as thick lines in Figure lb. It can be seen 
that these lines are everywhere orthogonal to the lines of constant phase, as 
follows from equations (2.3) and (2.5). 

Figures la  and lb were obtained with the aid of  a computer and an 
associated graph plotter. The expressions for H and g',  representing the 
amplitude and phase of the magnetic field in equation (2.4) were first 
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obtained in terms o fx  and y coordinates by appropriate substitutions from 
equations (2.1) (2.2) (2.3). The Fresnel integrals in these expressions arising 
from equations (2.2) were calculated by means of a subroutine taken from 
the program library at CERN and accurate to 8 significant figures. The line 
of constant phase passsing through a given point was constructed by calculat- 
ing the gradients 6q~/Sx and 6",I'/6y. Since the phase increment corresponding 
to the position increments 8x and 6y is given by 

- -  + (2.7) 

the gradient of the line of constant phase, for which 8ff ~ = O, is -(8'~/6x)/ 
(8~/8y). A step was taken in this direction and a new point established. The 
process was repeated starting from the new point and thus an array of points 
on the constant phase contour was derived. Any error due to the finite size 
of the step was corrected by adjustment of the subsequent step. The step 
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size was varied to suit the curvature o f  the contour, and was normally set 
to 0.05X. The automatic graph plotter was used to draw a smooth curve 
through the set o f  points. The constant amplitude contours were con- 
structed in a similar manner using the amplitude gradients ~H/;Sx and 6H/~y. 
The lines o f  energy flow were constructed so as to be orthogonal to the lines 
of  constant phase. Errors in the plotted figures are not greater than 0.02~. 

3. Solution for the Single Slit 

In order to deal with the double slit, we shall first construct the solution 
for the single slit as a superposition of  solutions for the half plane and 
establish the necessary notation. 

Equations (2.3) and (2.4) represent the complete solution in polar co- 
ordinates for a half plane which extends from x = 0 to x = + oo. This solution 
is represented by +~0 (see Figure 2). 

The solution for the case in which the half plane extends from x = a to 
x = + ~ is represented by +g;a; this solution is obtained by substituting 
x - a for x in +if%. The solution for the case in which the half plane extends 
from x = b to x = - oo is represented by _cbb; this solution is obtained by  
substituting b - x for x in +~0. The solution for free space is represented by 
qsf; this solution is the limiting form of  +ago as x -+ - oo. The solution for 
the case o f  a perfectly conducting and infinite plane is represented by qsr; 
this is the limiting form of + ~o as x -+ + oo. 

The field components relating to the single slit are denoted by a single 
prime superscript, e.g. Ex, where distinction is required. For the double slit, 
a double prime is used. 

It is well known that any sum of  solutions to Maxwell's equations is itself 
another solution. We now consider the solution 

= + _ %  - % ( 3 . 1 )  

and show that it satisfies the electromagnetic boundary conditions for a slit 
in an in/mite plane. The plane is infinitesimally thin, perfectly conducting 
and perpendicular to the y axis. The slit edges are at x = a,b and run parallel 
to the z axis. As in the case of  the half plane we consider the solution in 
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Figure 2-Physical situations corresponding to the solutions. 
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which the magnetic vector Hz lies only in the z direction and the electric 
vectors Ex, Ey lie always in the xy plane. The boundary conditions require 
that Ex should be zero at the conducting surfaces; elsewhere all the field 
components should be continuous. 

It can be seen from the graphical solution for the half plane that f ix  < b 
and y = 0, then ~Hz/~y in +Oa is approximately equal to ~Hz/~y in Of. This 
is because +Oa -+ Of as x -~ - oo From equations (2.3) and (3.1) it follows 
that Ex is approximately equal to Ex in _Ob. Now Ex in -q~b is zero for 
x < b, y = 0, since this is the region which corresponds with the conducting 
surface of the half plane. Hence we have that for x < b, y = 0, Ex is approxi- 
mately zero. By a similar argument it follows that for x > a,y  = O, Ex is again 
approximately zero. Thus we find that at the conducting surfaces forming the 
slit the boundary condition for Ex is approximately satisfied. The continuity 
requirement for the field components Hz, Ex and E)  is also satisfied in +0' 
since this requirement is satisfied by each of the terms on the right hand side 
of equation (3.1), and we can conclude that +0' represents the solution for 
the single slit. 

It is possible to obtain an exact solution for the single slit in terms of 
Mathieu functions. The advantage of the approximate solution +0' is that 
it contains only trigonometric functions and Fresnel integrals which can be 
rapidly and accurately calculated by computer. We shall leave the physical 
justification for the use of the approximate solution until later. 

4. Solution for the Double Slit 

Form of  the Solution. 

Let _0 '  represent the solution for a single slit with edges at x = -a ,  - b  
(Figure 2). Then the solution 

O" = +O' + _ ~ 5 ' -  ~r (4.1) 

is the exact solution for the double slit provided that ~ '  represents the exact 
solution for the single slit. In _O', E~ is zero everywhere in the plane of the 
slit except in the aperture where - a  < x < -b.  Similarly in +0', E x is zero 
everywhere in the plane of the slit except where b < x < a. Hence in the 
summations represented by equation (4.1), Ex is zero everywhere in the 
plane y = 0 except where - a  < x < - b  and where b < x < a, i.e., Ex is zero 
everywhere on the conducting surfaces of the double slit arrangement shown 
in Figure 2. In order that the field components elsewhere should be con- 
tinuous the term in Or is required; otherwise there would be a discontinuity 
in the apertures of the slits. 

Application to a Particular Case. 

As in the case of the half plane the solution for the double slit can be 
expressed in the form of contours of constant amplitude and phase. To 
illustrate the application of the solution, we consider the case of two slits 
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(a) 
Figure 3-Solution for a double slit. (a) Lines of constant amplitude. Unlabeled lines 
have unit amplitude. Points of zero amplitude are shown by a dot; (b, facing page) 
Lines of constant phase. (c, facing page) Lines of energy flow. The axis of symmetry is 
represented by the dashed line. 

each having a width of 10 wavelengths and a separation of 20 wavelengths 
between their respective centres. 

The lines of constant amplitude are shown in Figure 3a. The pattern con- 
sists of the rapid fluctuations associated with interference upon which are 
superimposed the more slowly varying fluctuations which characterize 
diffraction. It can be shown that at an infinite distance from the slits the 
amplitude distribution corresponds with the usual classical formula for 
interference. An interesting feature of Figure 3a is that the points of zero 
amplitude, which are found only on the bright side of the conducting surface 
in the case of the half plane, are now found on the shadow side also. 

The lines of constant phase are shown in Figure 3b at intervals of 7r radians. 
The discontinuities in the lines, which occur at the intersection with points 
of zero amplitude, indicate a discontinuous change in phase of ir radians. As 
in the case of the half plane, there are again undulations in the phase lines 
and these become very marked in the region between the slits. 

The lines of energy flow are determined by a differential equation exactly 
analogous to that used for the half plane. These lines indicate the direction 
of the Poynting vector, corresponding with the direction of  energy flow at 
any point, and are shown in Figure 3c. 

The method used for constructing the lines of constant phase and energy 
flow was similar to that used previously for the half plane. A computer was 
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used to construct an array o f  points on the contour and this information was 
fed to an automatic graph plotter so that a continuous curve was drawn 
between the points of  the array. The interval between the points was varied 
to suit the curvature of  the contour and was normally set to 0.05X. Plotting 
errors in these curves are not greater than 0.02~. The lines of  constant 
amplitude were constructed manually by interpolation, from a tabular form 
of the solution, since the features of  this diagram do not merit very precise 
reproduction. It is accurate to about 0.1 k. 

Finally we return to the question of  the error in the solution itself due 
to the use o f  an approximate solution for the single slit. We have already 
noted that the boundary conditions require that Ex' should be zero at the 
conducting surfaces. Figure 4 shows the value of  Ex derived from the solution 
for the shadow side of  the conducting surface in the region between the slit 
edge and the axis of  symmetry where the error will be greatest. It can be 
seen that at the conducting surface E x falls sharply to a value of  about 10 -3 
o f  that in the centre o f  the slit aperture. A similar result is obtained for the 
bright side of  the conducting surface. In practice it is not possible to realize 
the physical conditions of  the solution exactly since any real material must 
possess finite conductivity and thickness. For a real conducting material Ex 
will consequently not be zero at the surface. In the case of  an infinite reflect- 
ing plane made of  copper it can be shown by the usual methods that, for 
visible wavelengths, the value of Ex at the surface is about 2 x 10 -2 of  that 
in the incident wave. Hence the errors in the solution are unlikely to be 
greater than those which would inevitably arise from the application of  the 
exact solution for the idealized case o f  a perfectly conducting and infinitely 
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Figure 4-Tangential field E~ in the plane of the slits (shadow side), Exo is the value of 
E~ in the center of the slit aperture, 
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thin material to a practical situation. The approximate solution described 
should generally be satisfactory in cases where the slit widths are greater than 
one wavelength. 

5. Discussion of the Solutions with Respect to Diffraction and Interference 
Phenomena 

The lines of energy flow which delineate the path of the light rays in the 
vicinity of a diffraction edge are shown in Figure lb. In the unobstructed 
region beyond the half plane, where x is negative and diffraction fringes 
occur, it can be seen that the lines weave alternately to left and right. The 
departure from a straight path is only a fraction of a wavelength, and we see 
that the idea that light travels in a straight line is very nearly true, yet it is 
just this weaving trajectory which enables the light energy to be redistributed 
in the form of a diffraction pattern. Comparison with Figure la shows that 
the flow lines bunch together at the diffraction maxima, while at the minima 
they are most widely dispersed. In the shadow region beyond the plane the 
flow lines become straight, corresponding with the absence of fringes in this 
area. In the reflection region on the bright side of the plane the lines undergo 
a reversal, rotating about points of zero amplitude. Thus all the features of 
the diffraction and reflection brought about by the plane can be understood 
in terms of the trajectory of energy flow. 

A similar situation obtains in the case of interference at a double slit, as 
can be seen in Figure 3. The weaving of the flow lines is more pronounced 
than for the half plane, corresponding with the greater variations in amplitude. 
There appears to be no obvious systematic pattern in this case, although as 
before the lines have the property that they are most densely gathered to- 
gether at regions of maximum amplitude, while at the minima they are most 
widely dispersed. By reason of slight undulations in their trajectories, the flow 
lines converge and diverge in such a manner that the energy is distributed 
according to the characteristic pattern of interference. 

The solution in Figure 3 covers only the Fresnel region close to the slits 
whereas most interference experiments are conducted in the Fraunhofer 
region far from the slits. The extension of the plots into this region would 
show that as the distance from the slits increases the bunching of the flow 
lines becomes more marked and the amplitude of the fringes increases until 
it corresponds with the Fraunhofer formula for interference at infinity. 

An interesting feature of Figure 3c is that no flow lines cross the axis of 
symmetry between the slits. This is related to the fact that the phase lines 
always cross the axis at right angles, and hence the flow lines which are 
orthogonal to the phase lines cannot cross it. Therefore the energy which 
illuminates the region to the left of  the axis of symmetry passes entirely 
through the left hand slit, and no energy passes into this region from the right 
hand slit. 

These studies of the solutions to Maxwelrs equations show that it is 
possible to interpret diffraction and interference in terms of the pattern of 
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energy flow. We may summarize this interpretation in the following way. In 
the absence of obstacles the rays of light energy follow a linear trajectory. 
The introduction of an obstacle, such as a plane which may contain slits, 
alters the electromagnetic boundary conditions in that plane and this causes 
the light rays to deviate from their straight path. This deviation may take 
the form of a change in the direction of linear propagation, as when light 
enters the region of shadow behind a diffracting screen, or it may take the 
form of undulations in the trajectory. In this latter case there will be a 
resultant concentration of energy in places where the light rays converge 
and a corresponding depletion where they diverge. This redistribution of 
energy due to the nonlinear trajectory is what is observed as a diffraction or 
interference pattern. 
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